Open-source Healthcare Statistics

Collecting statistics on the use of open-source code in the NHS and the wider healthcare field.

What is open-source?

Open-source is the practice of publishing the source code of a software project so that anyone can read, modify, re-use, and improve that software.

As set out in the NHS Digital Service Manual, public services are built with public money–so unless there’s a good reason not to (for security reasons for example), all code produced by the NHS should be made publicly available.

Open source means that the NHS can give our work back to the people who fund it, the public: allowing them to more easily join our staff, more quickly develop products to support us, and better understand and trust the work we do on their behalf. NHS Open-source Policy

To this end, the Department of Health & Social Care has recently made a commitment to make all new NHS code open source and published under appropriate licences such as MIT and OGLv3.

The growth of open-source in healthcare

The ‘cambrian explosion’ visualisation captures the rise in open-source software in recent years. From the first open-source repository published by NHS England in 2014, to over 1,200 today. Python, R, and webdev tools (HTML, css, Ruby, PHP) are the most popular languages.

Show code
import pandas as pd
import plotly.io as pio
import plotly.graph_objects as go
pio.renderers.default = 'notebook'
from datetime import datetime
from dateutil.relativedelta import relativedelta

# Load data
df = pd.read_csv("../data/org_repos_agg.csv")

# Convert the "Date" column to a datetime dtype
df['Date'] = pd.to_datetime(df['Date'])

def plotly_chart(df: pd.DataFrame,
                     group_col: str,
                     values_col: str,
                     date_col: str,
                     plot_title: str,
                     x_lab: str,
                     y_lab: str) -> None:
    # Group the DataFrame by Organisation
    grouped_df = df.groupby(group_col)
    
    data = []
    for org, org_df in grouped_df:
        
        # Create a scatter plot of the data points for each organisation
        scatter = go.Scatter(
            x=org_df[date_col],
            y=org_df[values_col],
            name=org,
            mode='lines',
            line=dict(width=3, dash='solid'),
            hovertemplate=f'%{{y:.0f}}'
        )
        data.append(scatter)
    
    # Set options
    min_xaxis = min(df[date_col])
    max_xaxis = max(df[date_col])
    max_yaxis = max(df[values_col])
    remove = ['zoom2d','pan2d', 'select2d', 'lasso2d', 'zoomIn2d',
            'zoomOut2d', 'autoScale2d', 'resetScale2d', 'zoom',
            'pan', 'select', 'zoomIn', 'zoomOut', 'autoScale',
            'resetScale', 'toggleSpikelines', 'hoverClosestCartesian',
            'hoverCompareCartesian', 'toImage']
    
    # Set layout
    layout = go.Layout(title=plot_title,
                       font=dict(size=12),
                       xaxis=dict(title=x_lab,
                                  # add more time to x-axis to show plot circles
                                  range=[min_xaxis - relativedelta(days=5),
                                         max_xaxis + relativedelta(days=5)]),
                       yaxis=dict(title=y_lab,
                                  # fix y0 at 0 and add 10% to y1
                                  range=[0, max_yaxis + (max_yaxis * 0.1)]),
                       showlegend=False,
                       hovermode="x unified")
    
    # Set configuration
    config = {'displaylogo': False,
              'displayModeBar': True,
              'modeBarButtonsToRemove': remove}
    
    # Create the figure and show()
    fig = go.Figure(data=data, layout=layout)
    fig.update_layout(template='plotly_white')
    fig.show(config=config)

plotly_chart(df, "Organisation", "Open Repositories", "Date", "The growth of open-source in healthcare", "Date", "Open Repositories")

Latest open-source statistics

Show code
import pandas as pd
import plotly.graph_objects as go
import datetime
from dateutil.relativedelta import relativedelta
from IPython.display import display, Markdown
from tabulate import tabulate

# Load data
df = pd.read_csv("../data/org_repos_agg.csv")

# Convert the "Date" column to a datetime dtype
df['Date'] = pd.to_datetime(df['Date'])

# Filter the latest date for each organization
latest_dates = df.groupby('Organisation')['Date'].idxmax()
latest_df = df.loc[latest_dates]

# Create a new column with hyperlinks for the "Organisation" column
latest_df['Organisation'] = latest_df.apply(lambda x: f"[{x['Organisation']}]({x['URL']})", axis=1)

# Drop the "Date" column and sort by "Open Repositories"
latest_df = latest_df.drop(['Date', 'URL'], axis=1).sort_values('Open Repositories', ascending=False)

# Calculate date data was rendered
today = datetime.date.today()
formatted_date = today.strftime("%d %B %Y")
display(Markdown('Data updated as of: `%s`.' % formatted_date))

Markdown(tabulate(latest_df, headers='keys', tablefmt='pipe', showindex=False))
Table 1: open-source statistics

Data updated as of: 12 January 2025.

Organisation Open Repositories Top Language Top License
NHSDigital 347 Python MIT License
opensafely 277 Python MIT License
nhsconnect 196 HTML Apache License 2.0
nhsuk 191 HTML MIT License
ebmdatalab 145 Python MIT License
nhsbsa 144 HTML MIT License
nhsengland 111 Python MIT License
nhsx 87 Python MIT License
ukhsa-collaboration 80 Python MIT License
HFAnalyticsLab 76 R MIT License
BHFDSC 68 Python Apache License 2.0
nice-digital 66 JavaScript MIT License
nhs-r-community 60 R Creative Commons Zero v1.0 Universal
Health-Education-England 58 Java MIT License
opensafely-core 54 Python Other
The-Strategy-Unit 53 R MIT License
nhs-bnssg-analytics 38 R GNU General Public License v3.0
UKHSA-Internal 34 Python MIT License
CDU-data-science-team 31 R Other
NHSLeadership 19 HTML Other
nhs-pycom 14 Python MIT License
111Online 12 C# Apache License 2.0
Nottingham-and-Nottinghamshire-ICS 7 R MIT License
CQCDigital 5 C# MIT License
MHRA 5 JavaScript MIT License
NHS-Blood-and-Transplant 1 C# GNU General Public License v3.0

NHS Python Community slack

If you want to learn more about this project, please join the discussion at the NHS Python Community Slack group.